object OpSpec
Differential Dynamic Logic's concrete syntax: operator notation specifications.
- Note
Subtleties: sPower right associative to ensure
x23
==x(23)
instead of(x2)3
. sPower < sNeg to ensure-x2
instead of==
-(x2)(-x)^2
. NUMBER lexer does not contain - sign to enable
x-5to be parsed. Parser will make up for this, respecting binary versus unary operators. sEquiv nonassociative to ensure that
p()<->q()<->r()does not parse since binding unclear. sAnd and sOr are right-associative to simplify stable position ordering during sequent decomposition.
- Alphabetic
- By Inheritance
- OpSpec
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
val
negativeNumber: Boolean
Whether to accept negative numbers as negative numbers as opposed to unary negation applied to a number.
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
op(expr: Expression): OpSpec
The operator notation of the top-level operator of
with opcode, precedence and associativityexpr
- val sAnd: BinaryOpSpec[Formula]
- val sAssign: BinaryOpSpec[Program]
- val sAssignAny: UnaryOpSpec[Program]
- val sAtomicODE: BinaryOpSpec[Program]
- val sBox: BinaryOpSpec[Expression]
- val sChoice: BinaryOpSpec[Program]
- val sCompose: BinaryOpSpec[Program]
- val sDChoice: BinaryOpSpec[Program]
- val sDLoop: UnaryOpSpec[Program]
- val sDiamond: BinaryOpSpec[Expression]
- val sDifferential: UnaryOpSpec[Term]
- val sDifferentialFormula: UnaryOpSpec[Formula]
- val sDifferentialProduct: BinaryOpSpec[DifferentialProduct]
- val sDifferentialProgramConst: UnitOpSpec
- val sDifferentialSymbol: UnaryOpSpec[Term]
- val sDivide: BinaryOpSpec[Term]
- val sDotFormula: UnitOpSpec
- val sDotTerm: UnitOpSpec
- val sDual: UnaryOpSpec[Program]
-
val
sEOF: UnitOpSpec
Parser needs a lookahead operator when actually already done, so don't dare constructing it
- val sEqual: BinaryOpSpec[Equal]
- val sEquiv: BinaryOpSpec[Formula]
- val sExists: BinaryOpSpec[Expression]
- val sFalse: UnitOpSpec
- val sForall: BinaryOpSpec[Expression]
- val sFuncOf: UnaryOpSpec[Term]
- val sGreater: BinaryOpSpec[Greater]
- val sGreaterEqual: BinaryOpSpec[GreaterEqual]
- val sIfThenElse: TernaryOpSpec[Program]
- val sImply: BinaryOpSpec[Formula]
- val sLess: BinaryOpSpec[Less]
- val sLessEqual: BinaryOpSpec[LessEqual]
- val sLoop: UnaryOpSpec[Program]
- val sMinus: BinaryOpSpec[Term]
- val sNeg: UnaryOpSpec[Term]
- val sNone: UnitOpSpec
-
val
sNoneDone: UnitOpSpec
Parser needs a lookahead operator when actually already done, so don't dare constructing it
-
val
sNoneUnfinished: UnitOpSpec
Parser needs a lookahead operator when actually already done, so don't dare constructing it
- val sNot: UnaryOpSpec[Formula]
- val sNotEqual: BinaryOpSpec[NotEqual]
- val sNothing: UnitOpSpec
- val sNumber: UnitOpSpec
- val sODESystem: BinaryOpSpec[Expression]
- val sOr: BinaryOpSpec[Formula]
- val sPair: BinaryOpSpec[Term]
- val sPlus: BinaryOpSpec[Term]
- val sPower: BinaryOpSpec[Term]
- val sPredOf: UnaryOpSpec[PredOf]
- val sPredicationalOf: UnaryOpSpec[PredicationalOf]
- val sProgramConst: UnitOpSpec
- val sRevImply: BinaryOpSpec[Formula]
- val sSystemConst: UnitOpSpec
- val sTest: UnaryOpSpec[Program]
- val sTimes: BinaryOpSpec[Term]
- val sTrue: UnitOpSpec
- val sUnitFunctional: UnitOpSpec
- val sUnitPredicational: UnitOpSpec
- val sVariable: UnitOpSpec
-
val
statementSemicolon: Boolean
Whether to terminate atomic statements with a semicolon instead of separating sequential compositions by a semicolon.
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
val
weakNeg: Boolean
true
has unary negation-
bind weakly like binary subtraction.true
has unary negation-
bind weakly like binary subtraction.false
has unary negation-
bind strong just shy of power^
.
KeYmaera X: An aXiomatic Tactical Theorem Prover
KeYmaera X is a theorem prover for differential dynamic logic (dL), a logic for specifying and verifying properties of hybrid systems with mixed discrete and continuous dynamics. Reasoning about complicated hybrid systems requires support for sophisticated proof techniques, efficient computation, and a user interface that crystallizes salient properties of the system. KeYmaera X allows users to specify custom proof search techniques as tactics, execute tactics in parallel, and interface with partial proofs via an extensible user interface.
http://keymaeraX.org/
Concrete syntax for input language Differential Dynamic Logic
Package Structure
Main documentation entry points for KeYmaera X API:
edu.cmu.cs.ls.keymaerax.core
- KeYmaera X kernel, proof certificates, main data structuresExpression
- Differential dynamic logic expressions:Term
,Formula
,Program
Sequent
- Sequents of formulasProvable
- Proof certificates transformed by rules/axiomsRule
- Proof rules as well asUSubstOne
for (one-pass) uniform substitutions and renaming.StaticSemantics
- Static semantics with free and bound variable analysisKeYmaeraXParser
.edu.cmu.cs.ls.keymaerax.parser
- Parser and pretty printer with concrete syntax and notation for differential dynamic logic.KeYmaeraXPrettyPrinter
- Pretty printer producing concrete KeYmaera X syntaxKeYmaeraXParser
- Parser reading concrete KeYmaera X syntaxKeYmaeraXArchiveParser
- Parser reading KeYmaera X model and proof archive.kyx
filesDLParser
- Combinator parser reading concrete KeYmaera X syntaxDLArchiveParser
- Combinator parser reading KeYmaera X model and proof archive.kyx
filesedu.cmu.cs.ls.keymaerax.infrastruct
- Prover infrastructure outside the kernelUnificationMatch
- Unification algorithmRenUSubst
- Renaming Uniform Substitution quickly combining kernel's renaming and substitution.Context
- Representation for contexts of formulas in which they occur.Augmentors
- Augmenting formula and expression data structures with additional functionalityExpressionTraversal
- Generic traversal functionality for expressionsedu.cmu.cs.ls.keymaerax.bellerophon
- Bellerophon tactic language and tactic interpreterBelleExpr
- Tactic language expressionsSequentialInterpreter
- Sequential tactic interpreter for Bellerophon tacticsedu.cmu.cs.ls.keymaerax.btactics
- Bellerophon tactic library for conducting proofs.TactixLibrary
- Main KeYmaera X tactic library including many proof tactics.HilbertCalculus
- Hilbert Calculus for differential dynamic logicSequentCalculus
- Sequent Calculus for propositional and first-order logicHybridProgramCalculus
- Hybrid Program Calculus for differential dynamic logicDifferentialEquationCalculus
- Differential Equation Calculus for differential dynamic logicUnifyUSCalculus
- Unification-based uniform substitution calculus underlying the other calculi[edu.cmu.cs.ls.keymaerax.btactics.UnifyUSCalculus.ForwardTactic ForwardTactic]
- Forward tactic framework for conducting proofs from premises to conclusionsedu.cmu.cs.ls.keymaerax.lemma
- Lemma mechanismLemma
- Lemmas are Provables stored under a name, e.g., in files.LemmaDB
- Lemma database stored in files or database etc.edu.cmu.cs.ls.keymaerax.tools.qe
- Real arithmetic back-end solversMathematicaQETool
- Mathematica interface for real arithmetic.Z3QETool
- Z3 interface for real arithmetic.edu.cmu.cs.ls.keymaerax.tools.ext
- Extended back-ends for noncritical ODE solving, counterexamples, algebra, simplifiers, etc.Mathematica
- Mathematica interface for ODE solving, algebra, simplification, invariant generation, etc.Z3
- Z3 interface for real arithmetic including simplifiers.Entry Points
Additional entry points and usage points for KeYmaera X API:
edu.cmu.cs.ls.keymaerax.launcher.KeYmaeraX
- Command-line launcher for KeYmaera X supports command-line argument-help
to obtain usage informationedu.cmu.cs.ls.keymaerax.btactics.AxIndex
- Axiom indexing data structures with keys and recursors for canonical proof strategies.edu.cmu.cs.ls.keymaerax.btactics.DerivationInfo
- Meta-information on all derivation steps (axioms, derived axioms, proof rules, tactics) with user-interface info.edu.cmu.cs.ls.keymaerax.bellerophon.UIIndex
- Index determining which canonical reasoning steps to display on the KeYmaera X User Interface.edu.cmu.cs.ls.keymaerax.btactics.Ax
- Registry for derived axioms and axiomatic proof rules that are proved from the core.References
Full references on KeYmaera X are provided at http://keymaeraX.org/. The main references are the following:
1. André Platzer. A complete uniform substitution calculus for differential dynamic logic. Journal of Automated Reasoning, 59(2), pp. 219-265, 2017.
2. Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp and André Platzer. KeYmaera X: An axiomatic tactical theorem prover for hybrid systems. In Amy P. Felty and Aart Middeldorp, editors, International Conference on Automated Deduction, CADE'15, Berlin, Germany, Proceedings, volume 9195 of LNCS, pp. 527-538. Springer, 2015.
3. André Platzer. Logical Foundations of Cyber-Physical Systems. Springer, 2018. Videos