class TimeStep extends AnyRef
Infrastructure for a concrete Taylor model time step:
Input: (linearly) preconditioned Taylor model (TM_l o RM_r), initial time t0, x0.provable: context |- x = TM_l(r) (zero interval term) r0.provable: context |- r = TM_r(e) t0: context |- t = t0 (implicitly) context |- e \in [-1, 1] (suitable for IntervalArithmeticV2) // @todo: make these assumptions more explicit
- Alphabetic
- By Inheritance
- TimeStep
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
- new TimeStep(x0: Seq[TM], r0: Seq[TM], t0: ProvableSig, h: BigDecimal)(implicit options: TaylorModelOptions, timeStepOptions: TimeStepOptions)
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
- val boxTMEnclosure1: Formula
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
- val context: IndexedSeq[Formula]
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- val initialCondition1: Formula
- val initialConditionFmls1: List[Formula]
- val initialConditionPrv: ProvableSig
- val initialStateEqs: Seq[ProvableSig]
- val instantiation: USubstOne
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- val localTime: Term
- def mkTerm(coeff: (BigDecimal, BigDecimal)): Term
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- val nonnegativeTimeStep: ProvableSig
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- val numbericCondition1: Formula
- val numbericConditionPrv: ProvableSig
- val numericAssumptionPrv: ProvableSig
- val qeTool: BigDecimalTool
- val rIntervals: IndexedSeq[(Term, Term, ProvableSig)]
- val rightTmDomainPrv: ProvableSig
- val rvars: IndexedSeq[Term]
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
- val t1: Term
- val t1Eq: Equal
- val t1Prv: ProvableSig
- val taylorModelsFml: Formula
- val taylorModelsIvl: List[(Exists, Exists, ProvableSig, (Term, PolynomialArithV2.Polynomial, Term, Term, ProvableSig))]
- val timeEq: Equal
- val timeFml: Formula
-
def
timeStepLemma(P: Formula): (ProvableSig, Seq[TM], Seq[TM], (Seq[TM], Seq[TM], ProvableSig))
Computes concrete Taylor models to perform a time step on an (unbounded time) ode evolution:
Computes concrete Taylor models to perform a time step on an (unbounded time) ode evolution:
- returns
(provable, TM_ivl, (TM_h, t1_eq)) where provable: ivlContext |- eqContext |- " " Γ, s ∈ [0, h], x = TM_ivl(s, r) |- P() ;; Γ, t=t0+h, x = TM_h(r) |- [{x'=ode(x)}]P -------------------------------------------------------------------------------------------------------------- Γ, t=t0, x=TM0(r) |- [{x'=ode(x)}]P TM_ivl.context = ivlContext TM_h.context = eqContext t1_eq: eqContext |- t=t0+h
-
def
timeStepLemma: ProvableSig
* computes a concrete Taylor Model in the variables r of the right Taylor model [{x'=ode(x)&t0<=t&t<=t0+h}]x=TM(r)
- val timebounds: IndexedSeq[LessEqual]
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
KeYmaera X: An aXiomatic Tactical Theorem Prover
KeYmaera X is a theorem prover for differential dynamic logic (dL), a logic for specifying and verifying properties of hybrid systems with mixed discrete and continuous dynamics. Reasoning about complicated hybrid systems requires support for sophisticated proof techniques, efficient computation, and a user interface that crystallizes salient properties of the system. KeYmaera X allows users to specify custom proof search techniques as tactics, execute tactics in parallel, and interface with partial proofs via an extensible user interface.
http://keymaeraX.org/
Concrete syntax for input language Differential Dynamic Logic
Package Structure
Main documentation entry points for KeYmaera X API:
edu.cmu.cs.ls.keymaerax.core- KeYmaera X kernel, proof certificates, main data structuresExpression- Differential dynamic logic expressions:Term,Formula,ProgramSequent- Sequents of formulasProvable- Proof certificates transformed by rules/axiomsRule- Proof rules as well asUSubstOnefor (one-pass) uniform substitutions and renaming.StaticSemantics- Static semantics with free and bound variable analysisKeYmaeraXParser.edu.cmu.cs.ls.keymaerax.parser- Parser and pretty printer with concrete syntax and notation for differential dynamic logic.KeYmaeraXPrettyPrinter- Pretty printer producing concrete KeYmaera X syntaxKeYmaeraXParser- Parser reading concrete KeYmaera X syntaxKeYmaeraXArchiveParser- Parser reading KeYmaera X model and proof archive.kyxfilesDLParser- Combinator parser reading concrete KeYmaera X syntaxDLArchiveParser- Combinator parser reading KeYmaera X model and proof archive.kyxfilesedu.cmu.cs.ls.keymaerax.infrastruct- Prover infrastructure outside the kernelUnificationMatch- Unification algorithmRenUSubst- Renaming Uniform Substitution quickly combining kernel's renaming and substitution.Context- Representation for contexts of formulas in which they occur.Augmentors- Augmenting formula and expression data structures with additional functionalityExpressionTraversal- Generic traversal functionality for expressionsedu.cmu.cs.ls.keymaerax.bellerophon- Bellerophon tactic language and tactic interpreterBelleExpr- Tactic language expressionsSequentialInterpreter- Sequential tactic interpreter for Bellerophon tacticsedu.cmu.cs.ls.keymaerax.btactics- Bellerophon tactic library for conducting proofs.TactixLibrary- Main KeYmaera X tactic library including many proof tactics.HilbertCalculus- Hilbert Calculus for differential dynamic logicSequentCalculus- Sequent Calculus for propositional and first-order logicHybridProgramCalculus- Hybrid Program Calculus for differential dynamic logicDifferentialEquationCalculus- Differential Equation Calculus for differential dynamic logicUnifyUSCalculus- Unification-based uniform substitution calculus underlying the other calculi[edu.cmu.cs.ls.keymaerax.btactics.UnifyUSCalculus.ForwardTactic ForwardTactic]- Forward tactic framework for conducting proofs from premises to conclusionsedu.cmu.cs.ls.keymaerax.lemma- Lemma mechanismLemma- Lemmas are Provables stored under a name, e.g., in files.LemmaDB- Lemma database stored in files or database etc.edu.cmu.cs.ls.keymaerax.tools.qe- Real arithmetic back-end solversMathematicaQETool- Mathematica interface for real arithmetic.Z3QETool- Z3 interface for real arithmetic.edu.cmu.cs.ls.keymaerax.tools.ext- Extended back-ends for noncritical ODE solving, counterexamples, algebra, simplifiers, etc.Mathematica- Mathematica interface for ODE solving, algebra, simplification, invariant generation, etc.Z3- Z3 interface for real arithmetic including simplifiers.Entry Points
Additional entry points and usage points for KeYmaera X API:
edu.cmu.cs.ls.keymaerax.launcher.KeYmaeraX- Command-line launcher for KeYmaera X supports command-line argument-helpto obtain usage informationedu.cmu.cs.ls.keymaerax.btactics.AxIndex- Axiom indexing data structures with keys and recursors for canonical proof strategies.edu.cmu.cs.ls.keymaerax.btactics.DerivationInfo- Meta-information on all derivation steps (axioms, derived axioms, proof rules, tactics) with user-interface info.edu.cmu.cs.ls.keymaerax.bellerophon.UIIndex- Index determining which canonical reasoning steps to display on the KeYmaera X User Interface.edu.cmu.cs.ls.keymaerax.btactics.Ax- Registry for derived axioms and axiomatic proof rules that are proved from the core.References
Full references on KeYmaera X are provided at http://keymaeraX.org/. The main references are the following:
1. André Platzer. A complete uniform substitution calculus for differential dynamic logic. Journal of Automated Reasoning, 59(2), pp. 219-265, 2017.
2. Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp and André Platzer. KeYmaera X: An axiomatic tactical theorem prover for hybrid systems. In Amy P. Felty and Aart Middeldorp, editors, International Conference on Automated Deduction, CADE'15, Berlin, Germany, Proceedings, volume 9195 of LNCS, pp. 527-538. Springer, 2015.
3. André Platzer. Logical Foundations of Cyber-Physical Systems. Springer, 2018. Videos