Packages

object SequentCalculus extends SequentCalculus

Sequent Calculus for propositional and first-order logic.

See also

SequentCalculus

Linear Supertypes
SequentCalculus, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. SequentCalculus
  2. SequentCalculus
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def allL(e: Term): DependentPositionWithAppliedInputTactic
    Definition Classes
    SequentCalculus
  5. def allL(e: Option[Term]): DependentPositionWithAppliedInputTactic

    all left: instantiate a universal quantifier in the antecedent by the concrete instance e (itself if None).

    all left: instantiate a universal quantifier in the antecedent by the concrete instance e (itself if None).

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$481 , x$485 , x$486 , x$483 , x$484 , x$487 , x$488 , x$489 , x$490 , x$491 , x$482 , x$492 )
  6. def allL(x: Variable, inst: Term): BuiltInPositionTactic

    all left: instantiate a universal quantifier for variable x in the antecedent by the concrete instance inst.

    all left: instantiate a universal quantifier for variable x in the antecedent by the concrete instance inst.

    p(inst), G |- D
    ------------------------ ∀L
    \forall x p(x), G |- D
    Definition Classes
    SequentCalculus
  7. val allL: DependentPositionTactic

    all left: instantiate a universal quantifier in the antecedent by itself.

    all left: instantiate a universal quantifier in the antecedent by itself.

    Definition Classes
    SequentCalculus
  8. def allLPos(instPos: Position): DependentPositionTactic

    all left: instantiate a universal quantifier in the antecedent by the term obtained from position instPos.

    all left: instantiate a universal quantifier in the antecedent by the term obtained from position instPos.

    Definition Classes
    SequentCalculus
  9. def allLkeep(e: Term): DependentPositionWithAppliedInputTactic

    all left keep: keeping around the quantifier, instantiate a universal quantifier in the antecedent by the concrete instance e.

    all left keep: keeping around the quantifier, instantiate a universal quantifier in the antecedent by the concrete instance e.

    \forll x p(x), G, p(e) |- D
    --------------------------- ∀L
    \forall x p(x), G |- D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$505 , x$509 , x$510 , x$507 , x$508 , x$511 , x$512 , x$513 , x$514 , x$515 , x$506 , x$516 )
  10. def allLmon(q: Formula): DependentPositionWithAppliedInputTactic

    Universal monotonicity in antecedent: replace p(x) with a characteristic property q(x).

    Universal monotonicity in antecedent: replace p(x) with a characteristic property q(x).

    Use:                      Show:
    G, \forall x q(x) |- D    G, p(x) |- D, q(x)
    -------------------------------------------- M∀L
    G, \forall x p(x) |- D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$493 , x$497 , x$498 , x$495 , x$496 , x$499 , x$500 , x$501 , x$502 , x$503 , x$494 , x$504 )
  11. val allR: BuiltInPositionTactic

    all right: Skolemize a universal quantifier in the succedent (Skolemize) Skolemization with bound renaming on demand.

    all right: Skolemize a universal quantifier in the succedent (Skolemize) Skolemization with bound renaming on demand.

    G |- p(x), D
    ----------------------- (Skolemize) provided x not in G,D
    G |- \forall x p(x), D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$217 , x$220 , x$221 , x$218 , x$219 , x$222 , x$223 , x$224 , x$225 , x$226 , x$227 , x$228 )
    Examples:
    1. y>5   |- x^2>=0
      --------------------------allSkolemize(1)
      y>5   |- \forall x x^2>=0
    2. ,
    3. Uniformly renames other occurrences of the quantified variable in the context on demand to avoid SkolemClashException.

      x_0>0 |- x^2>=0
      --------------------------allSkolemize(1)
      x>0   |- \forall x x^2>=0
    See also

    edu.cmu.cs.ls.keymaerax.core.Skolemize

  12. def allRi(t: Term, x: Option[Variable]): DependentPositionWithAppliedInputTactic
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$469 , x$474 , x$475 , x$471 , x$472 , x$476 , x$477 , x$473 , x$478 , x$479 , x$470 , x$480 )
  13. def alphaRen(what: Variable, to: Variable): DependentPositionWithAppliedInputTactic

    Alpha bound renaming of what to to at a specific position (for quantifier/assignment/ode).

    Alpha bound renaming of what to to at a specific position (for quantifier/assignment/ode). Variable to must not occur free at the applied position.

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$565 , x$570 , x$566 , x$567 , x$568 , x$571 , x$572 , x$573 , x$574 , x$575 , x$569 , x$576 )
    Example:
    1. x=y |- [{y'=y}]y>=0      x=y |- [{x'=x}]x>=0, x=y
      ------------------------------------------------- alphaRen("x","y",1)
      x=y |- [{x'=x}]x>=0
  14. def alphaRenAll(what: Variable, to: Variable): InputTactic

    Alpha renaming of what to to everywhere in the sequent.

    Alpha renaming of what to to everywhere in the sequent. Formulas that have variable to occur free are excluded from the renaming.

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$577 , x$582 , x$578 , x$579 , x$580 , x$583 , x$584 , x$585 , x$586 , x$587 , x$581 , x$588 )
    Example:
    1. [y:=0;]y>=0 |- [{y'=y}]y>=0, [x:=y;]x=y      [x:=0;]x>=0 |- [{x'=x}]x>=0, x:=y;]x=y, x=y
      ---------------------------------------------------------------------------------------- alphaRenAll("x","y",1)
      [x:=0;]x>=0 |- [{x'=x}]x>=0, [x:=y;]x=y
  15. val alphaRenAllBy: DependentPositionTactic

    Alpha renaming everywhere in the sequent using an equality at a specific position in the antecedent.

    Alpha renaming everywhere in the sequent using an equality at a specific position in the antecedent.

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$589 , x$593 , x$590 , x$592 , x$591 , x$594 , x$595 , x$596 , x$597 , x$598 , x$599 , x$600 )
  16. val andL: CoreLeftTactic

    &L And left: split a conjunction in the antecedent into separate assumptions (AndLeft)

    &L And left: split a conjunction in the antecedent into separate assumptions (AndLeft)

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$241 , x$244 , x$245 , x$242 , x$243 , x$246 , x$247 , x$248 , x$249 , x$250 , x$251 , x$252 )
  17. def andLi(keepLeft: Boolean): BuiltInTwoPositionTactic

    Inverse of andL.

    Inverse of andL.

      G, G', G'', a&b  |- D
    -------------------------
      G, a, G', b, G'' |- D
    Definition Classes
    SequentCalculus
  18. val andLi: AppliedBuiltinTwoPositionTactic
    Definition Classes
    SequentCalculus
  19. val andR: DependentPositionTactic

    &R And right: prove a conjunction in the succedent on two separate branches (AndRight)

    &R And right: prove a conjunction in the succedent on two separate branches (AndRight)

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$169 , x$172 , x$173 , x$170 , x$171 , x$174 , x$175 , x$176 , x$177 , x$178 , x$179 , x$180 )
  20. val andRRule: CoreRightTactic
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$361 , x$364 , x$365 , x$362 , x$363 , x$366 , x$367 , x$368 , x$369 , x$370 , x$371 , x$372 )
  21. val applyEqualities: BuiltInTactic

    Rewrites all atom equalities in the assumptions.

    Rewrites all atom equalities in the assumptions.

    Definition Classes
    SequentCalculus
  22. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  23. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  24. def close(a: Int, s: Int): BelleExpr
    Definition Classes
    SequentCalculus
  25. val close: BuiltInTactic

    close: closes the branch when the same formula is in the antecedent and succedent or true right or false left.

    close: closes the branch when the same formula is in the antecedent and succedent or true right or false left.

           *
    ------------------ (Id)
      p, G |- p, D
          *
    ------------------ (close true)
      G |- true, D
           *
    ------------------ (close false)
      false, G |- D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$157 , x$161 , x$158 , x$159 , x$160 , x$162 , x$163 , x$164 , x$165 , x$166 , x$167 , x$168 )
  26. val closeF: BuiltInTactic

    closeF: closes the branch when false is in the antecedent (CloseFalse).

    closeF: closes the branch when false is in the antecedent (CloseFalse).

           *
    ------------------ (close false)
      false, G |- D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$325 , x$329 , x$326 , x$327 , x$328 , x$330 , x$331 , x$332 , x$333 , x$334 , x$335 , x$336 )
  27. val closeId: BuiltInTwoPositionTactic

    close: closes the branch when the same formula is in the antecedent and succedent at the indicated positions (Close).

    close: closes the branch when the same formula is in the antecedent and succedent at the indicated positions (Close).

           *
    ------------------ (Id)
      p, G |- p, D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$123 , x$121 , x$122 , x$124 , x$125 , x$126 , x$127 , x$128 , x$129 , x$130 , x$131 , x$132 )
  28. val closeIdWith: BuiltInPositionTactic

    closeIdWith: closes the branch with the formula at the given position when the same formula is in the antecedent and succedent (Close)

    closeIdWith: closes the branch with the formula at the given position when the same formula is in the antecedent and succedent (Close)

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$305 , x$304 , x$301 , x$302 , x$303 , x$306 , x$307 , x$308 , x$309 , x$310 , x$311 , x$312 )
  29. val closeT: BuiltInTactic

    closeT: closes the branch when true is in the succedent (CloseTrue).

    closeT: closes the branch when true is in the succedent (CloseTrue).

          *
    ------------------ (close true)
      G |- true, D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$73 , x$77 , x$74 , x$75 , x$76 , x$78 , x$79 , x$80 , x$81 , x$82 , x$83 , x$84 )
  30. val cohide: BuiltInPositionTactic

    CoHide/coweaken whether left or right: drop all other formulas from the sequent (CoHideLeft)

    CoHide/coweaken whether left or right: drop all other formulas from the sequent (CoHideLeft)

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$229 , x$233 , x$230 , x$231 , x$232 , x$234 , x$235 , x$236 , x$237 , x$238 , x$239 , x$240 )
  31. val cohide2: BuiltInTwoPositionTactic

    CoHide2/coweaken2 both left and right: drop all other formulas from the sequent (CoHide2)

    CoHide2/coweaken2 both left and right: drop all other formulas from the sequent (CoHide2)

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( "WLR" , "coHide2" , "Co-Weaken Both" , "P |- Q" , "Γ, P |- Q, Δ" , macros.this.Tactic.<init>$default$6 , macros.this.Tactic.<init>$default$7 , macros.this.Tactic.<init>$default$8 , macros.this.Tactic.<init>$default$9 , ... , ... , ... )
  32. val cohideL: CoreLeftTactic

    CoHide/weaken left: drop all other formulas from the sequent (CoHideLeft)

    CoHide/weaken left: drop all other formulas from the sequent (CoHideLeft)

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$349 , x$353 , x$350 , x$351 , x$352 , x$354 , x$355 , x$356 , x$357 , x$358 , x$359 , x$360 )
  33. val cohideOnlyL: BuiltInLeftTactic

    Cohides in antecedent, but leaves succedent as is.

    Cohides in antecedent, but leaves succedent as is.

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$277 , x$281 , x$278 , x$279 , x$280 , x$282 , x$283 , x$284 , x$285 , x$286 , x$287 , x$288 )
  34. val cohideOnlyR: BuiltInRightTactic

    Cohides in succedent, but leaves antecedent as is.

    Cohides in succedent, but leaves antecedent as is.

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$313 , x$317 , x$314 , x$315 , x$316 , x$318 , x$319 , x$320 , x$321 , x$322 , x$323 , x$324 )
  35. val cohideR: CoreRightTactic

    CoHide/weaken right: drop all other formulas from the sequent (CoHideRight)

    CoHide/weaken right: drop all other formulas from the sequent (CoHideRight)

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$85 , x$89 , x$86 , x$87 , x$88 , x$90 , x$91 , x$92 , x$93 , x$94 , x$95 , x$96 )
  36. lazy val commuteEqual: BuiltInPositionTactic

    Commute equality a=b to b=a

    Commute equality a=b to b=a

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$193 , x$196 , x$194 , x$197 , x$195 , x$198 , x$199 , x$200 , x$201 , x$202 , x$203 , x$204 )
  37. val commuteEquivL: CoreLeftTactic

    Commute equivalence on the left CommuteEquivLeft.

    Commute equivalence on the left CommuteEquivLeft.

    q<->p, G |-  D
    -------------- (<->cL)
    p<->q, G |-  D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$601 , x$605 , x$602 , x$603 , x$604 , x$606 , x$607 , x$608 , x$609 , x$610 , x$611 , x$612 )
  38. val commuteEquivR: CoreRightTactic

    Commute equivalence on the right CommuteEquivRight.

    Commute equivalence on the right CommuteEquivRight.

    G |- q<->p, D
    ------------- (<->cR)
    G |- p<->q, D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$205 , x$209 , x$206 , x$207 , x$208 , x$210 , x$211 , x$212 , x$213 , x$214 , x$215 , x$216 )
  39. def cut(f: Formula): InputTactic

    cut a formula in to prove it on one branch and then assume it on the other.

    cut a formula in to prove it on one branch and then assume it on the other. Or to perform a case distinction on whether it holds (Cut).

    Use:          Show:
    G, c |- D     G |- D, c
    ----------------------- (cut)
            G |- D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$436 , x$437 , x$438 , x$433 , x$434 , x$439 , x$440 , x$441 , x$442 , x$443 , x$435 , x$444 )
  40. def cutL(f: Formula): DependentPositionWithAppliedInputTactic

    cut a formula in in place of pos on the left to prove its implication on the second branch and assume it on the first.

    cut a formula in in place of pos on the left to prove its implication on the second branch and assume it on the first. (CutLeft).

    c, G |- D    G |- D, p->c
    ------------------------- (Cut Left)
           p, G |- D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$460 , x$461 , x$462 , x$457 , x$458 , x$463 , x$464 , x$465 , x$466 , x$467 , x$459 , x$468 )
  41. def cutLR(f: Formula): DependentPositionWithAppliedInputTactic

    cut a formula in in place of pos to prove its implication on the second branch and assume it on the first (whether pos is left or right).

    cut a formula in in place of pos to prove its implication on the second branch and assume it on the first (whether pos is left or right). (CutLeft or CutRight).

    c, G |- D    G |- D, p->c
    ------------------------- (Cut Left at antecedent<0)
           p, G |- D
    G |- c, D    G |- c->p, D
    ------------------------- (Cut right at succedent>0)
           G |- p, D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( macros.this.Tactic.<init>$default$1 , macros.this.Tactic.<init>$default$2 , macros.this.Tactic.<init>$default$3 , macros.this.Tactic.<init>$default$4 , macros.this.Tactic.<init>$default$5 , macros.this.Tactic.<init>$default$6 , macros.this.Tactic.<init>$default$7 , macros.this.Tactic.<init>$default$8 , macros.this.Tactic.<init>$default$9 , ... , ... , ... )
  42. def cutR(f: Formula): DependentPositionWithAppliedInputTactic

    cut a formula in in place of pos on the right to prove its implication on the second branch and assume it on the first.

    cut a formula in in place of pos on the right to prove its implication on the second branch and assume it on the first. (CutRight).

    G |- c, D    G |- c->p, D
    ------------------------- (Cut right)
           G |- p, D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$448 , x$449 , x$450 , x$445 , x$446 , x$451 , x$452 , x$453 , x$454 , x$455 , x$447 , x$456 )
  43. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  44. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  45. val equivL: DependentPositionTactic

    <->L Equiv left: use an equivalence by considering both true or both false cases (EquivLeft)

    <->L Equiv left: use an equivalence by considering both true or both false cases (EquivLeft)

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$397 , x$400 , x$401 , x$398 , x$399 , x$402 , x$403 , x$404 , x$405 , x$406 , x$407 , x$408 )
  46. val equivLRule: CoreLeftTactic
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$409 , x$412 , x$413 , x$410 , x$411 , x$414 , x$415 , x$416 , x$417 , x$418 , x$419 , x$420 )
  47. val equivR: DependentPositionTactic

    <->R Equiv right: prove an equivalence by proving both implications (EquivRight)

    <->R Equiv right: prove an equivalence by proving both implications (EquivRight)

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$61 , x$64 , x$65 , x$62 , x$63 , x$66 , x$67 , x$68 , x$69 , x$70 , x$71 , x$72 )
  48. val equivRRule: CoreRightTactic
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$421 , x$424 , x$425 , x$422 , x$423 , x$426 , x$427 , x$428 , x$429 , x$430 , x$431 , x$432 )
  49. val equivifyR: CoreRightTactic

    Turn implication a->b on the right into an equivalence a<->b, which is useful to prove by CE etc.

    Turn implication a->b on the right into an equivalence a<->b, which is useful to prove by CE etc. (EquivifyRight).

    G |- a<->b, D
    -------------
    G |- a->b,  D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$181 , x$185 , x$182 , x$183 , x$184 , x$186 , x$187 , x$188 , x$189 , x$190 , x$191 , x$192 )
  50. val exchangeL: BuiltInTwoPositionTactic

    Exchange left rule reorders antecedent.

    Exchange left rule reorders antecedent.

    q, p, G |- D
    ------------- (Exchange left)
    p, q, G |- D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$289 , x$293 , x$290 , x$291 , x$292 , x$294 , x$295 , x$296 , x$297 , x$298 , x$299 , x$300 )
  51. val exchangeR: BuiltInTwoPositionTactic

    Exchange right rule reorders succedent.

    Exchange right rule reorders succedent.

    G |- q, p, D
    ------------- (Exchange right)
    G |- p, q, D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$337 , x$341 , x$338 , x$339 , x$340 , x$342 , x$343 , x$344 , x$345 , x$346 , x$347 , x$348 )
  52. val existsL: BuiltInPositionTactic

    exists left: Skolemize an existential quantifier in the antecedent by introducing a new name for the witness.

    exists left: Skolemize an existential quantifier in the antecedent by introducing a new name for the witness.

              p(x), G |- D
    ------------------------ (Skolemize) provided x not in G,D
    \exists x p(x), G |- D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$265 , x$268 , x$269 , x$266 , x$267 , x$270 , x$271 , x$272 , x$273 , x$274 , x$275 , x$276 )
  53. def existsLi(t: Term, x: Option[Variable]): DependentPositionWithAppliedInputTactic
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$517 , x$522 , x$523 , x$519 , x$520 , x$524 , x$525 , x$521 , x$526 , x$527 , x$518 , x$528 )
  54. def existsR(e: Term): BuiltInPositionTactic
    Definition Classes
    SequentCalculus
  55. def existsR(e: Option[Term]): DependentPositionWithAppliedInputTactic

    exists right: instantiate an existential quantifier in the succedent by a concrete instance inst as a witness

    exists right: instantiate an existential quantifier in the succedent by a concrete instance inst as a witness

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$529 , x$533 , x$534 , x$531 , x$532 , x$535 , x$536 , x$537 , x$538 , x$539 , x$530 , x$540 )
  56. def existsR(x: Variable, inst: Term): BuiltInPositionTactic

    exists right: instantiate an existential quantifier for x in the succedent by a concrete instance inst as a witness.

    exists right: instantiate an existential quantifier for x in the succedent by a concrete instance inst as a witness.

    G |- p(inst), D
    ----------------------- ∃R
    G |- \exists x p(x), D
    Definition Classes
    SequentCalculus
  57. val existsR: DependentPositionTactic

    exists right: instantiate an existential quantifier for x in the succedent by itself as a witness

    exists right: instantiate an existential quantifier for x in the succedent by itself as a witness

    Definition Classes
    SequentCalculus
  58. def existsRPos(instPos: Position): DependentPositionTactic

    exists right: instantiate an existential quantifier in the succedent by a concrete term obtained from position instPos.

    exists right: instantiate an existential quantifier in the succedent by a concrete term obtained from position instPos.

    Definition Classes
    SequentCalculus
  59. def existsRmon(q: Formula): DependentPositionWithAppliedInputTactic

    Existential monotonicity in succedent: replace p(x) with a characteristic property q(x).

    Existential monotonicity in succedent: replace p(x) with a characteristic property q(x).

    Use:                      Show:
    G |- \exists x q(x), D    G, q(x) |- p(x), D
    -------------------------------------------- M∃R
    G |- \exists x p(x), D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$541 , x$545 , x$546 , x$543 , x$544 , x$547 , x$548 , x$549 , x$550 , x$551 , x$542 , x$552 )
  60. val expandAll: BuiltInTactic

    Expands all special functions (abs/min/max).

    Expands all special functions (abs/min/max).

    Definition Classes
    SequentCalculus
  61. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  62. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  63. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  64. val hide: BuiltInPositionTactic

    Hide/weaken whether left or right

    Hide/weaken whether left or right

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$133 , x$137 , x$134 , x$135 , x$136 , x$138 , x$139 , x$140 , x$141 , x$142 , x$143 , x$144 )
  65. val hideL: CoreLeftTactic

    Hide/weaken left: weaken a formula to drop it from the antecedent (HideLeft)

    Hide/weaken left: weaken a formula to drop it from the antecedent (HideLeft)

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$25 , x$29 , x$26 , x$27 , x$28 , x$30 , x$31 , x$32 , x$33 , x$34 , x$35 , x$36 )
  66. val hideR: CoreRightTactic

    Hide/weaken right: weaken a formula to drop it from the succcedent (HideRight)

    Hide/weaken right: weaken a formula to drop it from the succcedent (HideRight)

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$49 , x$53 , x$50 , x$51 , x$52 , x$54 , x$55 , x$56 , x$57 , x$58 , x$59 , x$60 )
  67. val id: BuiltInTactic

    id: closes the branch when the same formula is in the antecedent and succedent (Close).

    id: closes the branch when the same formula is in the antecedent and succedent (Close).

           *
    ------------------ (id)
      p, G |- p, D
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$16 , x$15 , x$17 , x$13 , x$14 , x$18 , x$19 , x$20 , x$21 , x$22 , x$23 , x$24 )
  68. val idx: DependentTactic
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$555 , x$556 , x$557 , x$553 , x$554 , x$558 , x$559 , x$560 , x$561 , x$562 , x$563 , x$564 )
  69. val implyL: DependentPositionTactic

    ->L Imply left: use an implication in the antecedent by proving its left-hand side on one branch and using its right-hand side on the other branch (ImplyLeft)

    ->L Imply left: use an implication in the antecedent by proving its left-hand side on one branch and using its right-hand side on the other branch (ImplyLeft)

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$253 , x$256 , x$257 , x$254 , x$255 , x$258 , x$259 , x$260 , x$261 , x$262 , x$263 , x$264 )
  70. val implyLRule: CoreLeftTactic
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$385 , x$388 , x$389 , x$386 , x$387 , x$390 , x$391 , x$392 , x$393 , x$394 , x$395 , x$396 )
  71. val implyR: CoreRightTactic

    ->R Imply right: prove an implication in the succedent by assuming its left-hand side and proving its right-hand side (ImplyRight)

    ->R Imply right: prove an implication in the succedent by assuming its left-hand side and proving its right-hand side (ImplyRight)

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$1 , x$4 , x$5 , x$2 , x$3 , x$6 , x$7 , x$8 , x$9 , x$10 , x$11 , x$12 )
  72. def implyRi(keep: Boolean = false): BuiltInTwoPositionTactic

    Inverse of implyR.

    Inverse of implyR.

      G, G' |- D, D', a -> b
    -------------------------
      G, a, G' |- D, b, D'
    Definition Classes
    SequentCalculus
  73. val implyRi: AppliedBuiltinTwoPositionTactic
    Definition Classes
    SequentCalculus
  74. val implyRiX: BuiltInTwoPositionTactic

    eXternal wrapper for implyRi

    eXternal wrapper for implyRi

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( "implyRi" , "implyRi" , macros.this.Tactic.<init>$default$3 , macros.this.Tactic.<init>$default$4 , macros.this.Tactic.<init>$default$5 , macros.this.Tactic.<init>$default$6 , macros.this.Tactic.<init>$default$7 , macros.this.Tactic.<init>$default$8 , macros.this.Tactic.<init>$default$9 , ... , ... , ... )
  75. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  76. def label(s: String): InputTactic

    Call/label the current proof branch by the top-level label s.

    Call/label the current proof branch by the top-level label s.

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( macros.this.Tactic.<init>$default$1 , macros.this.Tactic.<init>$default$2 , macros.this.Tactic.<init>$default$3 , macros.this.Tactic.<init>$default$4 , macros.this.Tactic.<init>$default$5 , macros.this.Tactic.<init>$default$6 , macros.this.Tactic.<init>$default$7 , macros.this.Tactic.<init>$default$8 , macros.this.Tactic.<init>$default$9 , ... , ... , ... )
    See also

    Idioms.<()

    sublabel()

    BelleLabels

  77. def label(s: BelleLabel): BelleExpr

    Call/label the current proof branch by the given label s.

    Call/label the current proof branch by the given label s.

    Definition Classes
    SequentCalculus
    See also

    Idioms.<()

    sublabel()

    BelleLabels

  78. def modusPonens(assumption: AntePos, implication: AntePos): BelleExpr

    Modus Ponens: p&(p->q) -> q.

    Modus Ponens: p&(p->q) -> q.

    assumption

    Position pointing to p

    implication

    Position pointing to p->q

    Definition Classes
    SequentCalculus
    Example:
    1.    p, q, G |- D
      ---------------- modusPonens
      p, p->q, G |- D
  79. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  80. val notL: CoreLeftTactic

    !L Not left: move an negation in the antecedent to the succedent (NotLeft)

    !L Not left: move an negation in the antecedent to the succedent (NotLeft)

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$109 , x$112 , x$113 , x$110 , x$111 , x$114 , x$115 , x$116 , x$117 , x$118 , x$119 , x$120 )
  81. val notR: CoreRightTactic

    !R Not right: move an negation in the succedent to the antecedent (NotRight)

    !R Not right: move an negation in the succedent to the antecedent (NotRight)

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$97 , x$100 , x$101 , x$98 , x$99 , x$102 , x$103 , x$104 , x$105 , x$106 , x$107 , x$108 )
  82. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  83. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  84. val orL: DependentPositionTactic

    |L Or left: use a disjunction in the antecedent by assuming each option on separate branches (OrLeft)

    |L Or left: use a disjunction in the antecedent by assuming each option on separate branches (OrLeft)

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$37 , x$40 , x$41 , x$38 , x$39 , x$42 , x$43 , x$44 , x$45 , x$46 , x$47 , x$48 )
  85. val orLRule: CoreLeftTactic
    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$373 , x$376 , x$377 , x$374 , x$375 , x$378 , x$379 , x$380 , x$381 , x$382 , x$383 , x$384 )
  86. val orR: CoreRightTactic

    |R Or right: split a disjunction in the succedent into separate formulas to show alternatively (OrRight)

    |R Or right: split a disjunction in the succedent into separate formulas to show alternatively (OrRight)

    Definition Classes
    SequentCalculus
    Annotations
    @Tactic( x$145 , x$148 , x$149 , x$146 , x$147 , x$150 , x$151 , x$152 , x$153 , x$154 , x$155 , x$156 )
  87. def orRi(keepLeft: Boolean): BuiltInTwoPositionTactic

    Inverse of orR.

    Inverse of orR.

      G |- D, D', D'', a | b
    -------------------------
      G |- D, a, D', b, D''
    Definition Classes
    SequentCalculus
  88. val orRi: AppliedBuiltinTwoPositionTactic
    Definition Classes
    SequentCalculus
  89. def sublabel(s: String): BelleExpr

    Mark the current proof branch and all subbranches s.

    Mark the current proof branch and all subbranches s.

    Definition Classes
    SequentCalculus
    See also

    label()

  90. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  91. def toString(): String
    Definition Classes
    AnyRef → Any
  92. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  93. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  94. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from SequentCalculus

Inherited from AnyRef

Inherited from Any

Ungrouped