abstract class LemmaDBBase extends LemmaDB
Common Lemma Database implemented from string-based storage primitives. Common logic shared by most lemma DB implementations. Most lemma DBs can (and should) be implemented by extending this class and implementing the abstract methods for basic storage operations.
- Alphabetic
- By Inheritance
- LemmaDBBase
- LemmaDB
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
- new LemmaDBBase()
Type Members
Abstract Value Members
-
abstract
def
contains(lemmaID: LemmaID): Boolean
Indicates whether or not this lemma DB contains a lemma with the specified ID.
Indicates whether or not this lemma DB contains a lemma with the specified ID.
- lemmaID
Identifies the lemma.
- returns
True, if this lemma DB contains a lemma with the specified ID; false otherwise.
- Definition Classes
- LemmaDB
-
abstract
def
createLemma(): LemmaID
Creates an identifier for a lemma, without any content.
Creates an identifier for a lemma, without any content.
- Attributes
- protected
-
abstract
def
deleteDatabase(): Unit
Delete the whole lemma database
Delete the whole lemma database
- Definition Classes
- LemmaDB
-
abstract
def
readLemmas(ids: List[LemmaID]): Option[List[String]]
Reads a list of lemmas with the given identifiers from the storage, giving back to-be-parsed lemmas.
Reads a list of lemmas with the given identifiers from the storage, giving back to-be-parsed lemmas.
- Attributes
- protected
-
abstract
def
remove(name: LemmaID): Unit
Delete the lemma of the given identifier, throwing exceptions if that was unsuccessful.
Delete the lemma of the given identifier, throwing exceptions if that was unsuccessful.
- name
Identifies the lemma.
- Definition Classes
- LemmaDB
-
abstract
def
removeAll(folder: String): Unit
Removes all lemmas in
folder.Removes all lemmas in
folder.- Definition Classes
- LemmaDB
-
abstract
def
version(): String
Returns the version of this lemma database.
Returns the version of this lemma database.
- Definition Classes
- LemmaDB
-
abstract
def
writeLemma(id: LemmaID, lemma: String): Unit
Write the string representation
lemmaof a lemma under the nameid.Write the string representation
lemmaof a lemma under the nameid.- Attributes
- protected
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
add(lemma: Lemma): LemmaID
Adds a new lemma to this lemma DB, with a unique name or None, which will automatically assign a name.
Adds a new lemma to this lemma DB, with a unique name or None, which will automatically assign a name.
- lemma
The lemma whose Provable will be inserted under its name.
- returns
Internal lemma identifier.
- Definition Classes
- LemmaDBBase → LemmaDB
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
flatOpt[T](l: List[Option[T]]): Option[List[T]]
Turns a list of options into a list or to a None if any list element was None.
Turns a list of options into a list or to a None if any list element was None. For convenience when implementing bulk get() from individual get()
- Attributes
- protected
-
final
def
get(ids: List[LemmaID]): Option[List[Lemma]]
Returns the lemmas with IDs
lemmaIDsor None if any of thelemmaIDsdoes not exist.Returns the lemmas with IDs
lemmaIDsor None if any of thelemmaIDsdoes not exist.- returns
The list of lemmas, if all
lemmaIDsexist. None otherwise.
- Definition Classes
- LemmaDBBase → LemmaDB
-
def
get(lemmaID: LemmaID): Option[Lemma]
Returns the lemma with the given name or None if non-existent.
Returns the lemma with the given name or None if non-existent.
- lemmaID
Identifies the lemma.
- returns
The lemma, if found under the given lemma ID. None otherwise.
- Definition Classes
- LemmaDB
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
KeYmaera X: An aXiomatic Tactical Theorem Prover
KeYmaera X is a theorem prover for differential dynamic logic (dL), a logic for specifying and verifying properties of hybrid systems with mixed discrete and continuous dynamics. Reasoning about complicated hybrid systems requires support for sophisticated proof techniques, efficient computation, and a user interface that crystallizes salient properties of the system. KeYmaera X allows users to specify custom proof search techniques as tactics, execute tactics in parallel, and interface with partial proofs via an extensible user interface.
http://keymaeraX.org/
Concrete syntax for input language Differential Dynamic Logic
Package Structure
Main documentation entry points for KeYmaera X API:
edu.cmu.cs.ls.keymaerax.core- KeYmaera X kernel, proof certificates, main data structuresExpression- Differential dynamic logic expressions:Term,Formula,ProgramSequent- Sequents of formulasProvable- Proof certificates transformed by rules/axiomsRule- Proof rules as well asUSubstOnefor (one-pass) uniform substitutions and renaming.StaticSemantics- Static semantics with free and bound variable analysisKeYmaeraXParser.edu.cmu.cs.ls.keymaerax.parser- Parser and pretty printer with concrete syntax and notation for differential dynamic logic.KeYmaeraXPrettyPrinter- Pretty printer producing concrete KeYmaera X syntaxKeYmaeraXParser- Parser reading concrete KeYmaera X syntaxKeYmaeraXArchiveParser- Parser reading KeYmaera X model and proof archive.kyxfilesDLParser- Combinator parser reading concrete KeYmaera X syntaxDLArchiveParser- Combinator parser reading KeYmaera X model and proof archive.kyxfilesedu.cmu.cs.ls.keymaerax.infrastruct- Prover infrastructure outside the kernelUnificationMatch- Unification algorithmRenUSubst- Renaming Uniform Substitution quickly combining kernel's renaming and substitution.Context- Representation for contexts of formulas in which they occur.Augmentors- Augmenting formula and expression data structures with additional functionalityExpressionTraversal- Generic traversal functionality for expressionsedu.cmu.cs.ls.keymaerax.bellerophon- Bellerophon tactic language and tactic interpreterBelleExpr- Tactic language expressionsSequentialInterpreter- Sequential tactic interpreter for Bellerophon tacticsedu.cmu.cs.ls.keymaerax.btactics- Bellerophon tactic library for conducting proofs.TactixLibrary- Main KeYmaera X tactic library including many proof tactics.HilbertCalculus- Hilbert Calculus for differential dynamic logicSequentCalculus- Sequent Calculus for propositional and first-order logicHybridProgramCalculus- Hybrid Program Calculus for differential dynamic logicDifferentialEquationCalculus- Differential Equation Calculus for differential dynamic logicUnifyUSCalculus- Unification-based uniform substitution calculus underlying the other calculi[edu.cmu.cs.ls.keymaerax.btactics.UnifyUSCalculus.ForwardTactic ForwardTactic]- Forward tactic framework for conducting proofs from premises to conclusionsedu.cmu.cs.ls.keymaerax.lemma- Lemma mechanismLemma- Lemmas are Provables stored under a name, e.g., in files.LemmaDB- Lemma database stored in files or database etc.edu.cmu.cs.ls.keymaerax.tools.qe- Real arithmetic back-end solversMathematicaQETool- Mathematica interface for real arithmetic.Z3QETool- Z3 interface for real arithmetic.edu.cmu.cs.ls.keymaerax.tools.ext- Extended back-ends for noncritical ODE solving, counterexamples, algebra, simplifiers, etc.Mathematica- Mathematica interface for ODE solving, algebra, simplification, invariant generation, etc.Z3- Z3 interface for real arithmetic including simplifiers.Entry Points
Additional entry points and usage points for KeYmaera X API:
edu.cmu.cs.ls.keymaerax.launcher.KeYmaeraX- Command-line launcher for KeYmaera X supports command-line argument-helpto obtain usage informationedu.cmu.cs.ls.keymaerax.btactics.AxIndex- Axiom indexing data structures with keys and recursors for canonical proof strategies.edu.cmu.cs.ls.keymaerax.btactics.DerivationInfo- Meta-information on all derivation steps (axioms, derived axioms, proof rules, tactics) with user-interface info.edu.cmu.cs.ls.keymaerax.bellerophon.UIIndex- Index determining which canonical reasoning steps to display on the KeYmaera X User Interface.edu.cmu.cs.ls.keymaerax.btactics.Ax- Registry for derived axioms and axiomatic proof rules that are proved from the core.References
Full references on KeYmaera X are provided at http://keymaeraX.org/. The main references are the following:
1. André Platzer. A complete uniform substitution calculus for differential dynamic logic. Journal of Automated Reasoning, 59(2), pp. 219-265, 2017.
2. Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp and André Platzer. KeYmaera X: An axiomatic tactical theorem prover for hybrid systems. In Amy P. Felty and Aart Middeldorp, editors, International Conference on Automated Deduction, CADE'15, Berlin, Germany, Proceedings, volume 9195 of LNCS, pp. 527-538. Springer, 2015.
3. André Platzer. Logical Foundations of Cyber-Physical Systems. Springer, 2018. Videos